Collective thermoregulation in bee clusters.

نویسندگان

  • Samuel A Ocko
  • L Mahadevan
چکیده

Swarming is an essential part of honeybee behaviour, wherein thousands of bees cling onto each other to form a dense cluster that may be exposed to the environment for several days. This cluster has the ability to maintain its core temperature actively without a central controller. We suggest that the swarm cluster is akin to an active porous structure whose functional requirement is to adjust to outside conditions by varying its porosity to control its core temperature. Using a continuum model that takes the form of a set of advection-diffusion equations for heat transfer in a mobile porous medium, we show that the equalization of an effective 'behavioural pressure', which propagates information about the ambient temperature through variations in density, leads to effective thermoregulation. Our model extends and generalizes previous models by focusing the question of mechanism on the form and role of the behavioural pressure, and allows us to explain the vertical asymmetry of the cluster (as a consequence of buoyancy-driven flows), the ability of the cluster to overpack at low ambient temperatures without breaking up at high ambient temperatures, and the relative insensitivity to large variations in the ambient temperature. Our theory also makes testable hypotheses for the response of the cluster to external temperature inhomogeneities and suggests strategies for biomimetic thermoregulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape and dynamics of thermoregulating honey bee clusters.

A model of simple algorithmic "agents" acting in a discrete temperature field is used to investigate the movement of individuals in thermoregulating honey bee (Apis mellifera) clusters. Thermoregulation in over-wintering clusters is thought to be the result of individual bees attempting to regulate their own body temperatures. At ambient temperatures above 0( degrees )C, a clustering bee will m...

متن کامل

Evidence for Ventilation through Collective Respiratory Movements in Giant Honeybee (Apis dorsata) Nests

The Asian giant honeybees (Apis dorsata) build single-comb nests in the open, which makes this species particularly susceptible to environmental strains. Long-term infrared (IR) records documented cool nest regions (CNR) at the bee curtain (nCNR = 207, nnests > 20) distinguished by marked negative gradients (ΔTCNR/d < -3°C / 5 cm) at their margins. CNRs develop and recede within minutes, predom...

متن کامل

A Swarm of Bee Research

Bees are amazing little creatures; while some of them live solitary lifestyles, many bee species form large colonies, or hives, and function as a superorganism. Scientific interest in bees covers many different angles. Some researchers are interested in how bees learn and communicate as part of the superorganism. Others study how bees fly and recognize objects during flight— skills that have in...

متن کامل

Bumble bees heat up for high quality pollen.

Thermoregulation plays a key role in bee foraging, allowing some species to forage in suboptimal temperatures. Recently, bumble bee thoracic temperature (T(th)) has been shown to increase with nectar carbohydrate content. However, pollen is also vital to bees and exhibits a greater than 20-fold range in protein quality. We provide the first demonstration that bee T(th) is also correlated with p...

متن کامل

Honey bee nest thermoregulation: diversity promotes stability.

A honey bee colony is characterized by high genetic diversity among its workers, generated by high levels of multiple mating by its queen. Few clear benefits of this genetic diversity are known. Here we show that brood nest temperatures in genetically diverse colonies (i.e., those sired by several males) tend to be more stable than in genetically uniform ones (i.e., those sired by one male). On...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 11 91  شماره 

صفحات  -

تاریخ انتشار 2014